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Selection against admixture and gene regulatory
divergence in a long-term primate field study
Tauras P. Vilgalys1,2†, Arielle S. Fogel1,3†, Jordan A. Anderson1, Raphael S. Mututua4,
J. Kinyua Warutere4, I. Long’ida Siodi4, Sang Yoon Kim1, Tawni N. Voyles1, Jacqueline A. Robinson5,
Jeffrey D. Wall5, Elizabeth A. Archie6, Susan C. Alberts1,7,8, Jenny Tung1,7,8,9,10*

Genetic admixture is central to primate evolution. We combined 50 years of field observations of
immigration and group demography with genomic data from ~9 generations of hybrid baboons
to investigate the consequences of admixture in the wild. Despite no obvious fitness costs to hybrids,
we found signatures of selection against admixture similar to those described for archaic hominins.
These patterns were concentrated near genes where ancestry is strongly associated with gene
expression. Our analyses also show that introgression is partially predictable across the genome. This
study demonstrates the value of integrating genomic and field data for revealing how “genomic
signatures of selection” (e.g., reduced introgression in low-recombination regions) manifest in nature;
moreover, it underscores the importance of other primates as living models for human evolution.

T
he ancestors of modern humans inter-
mixed with Neanderthals and other close,
now-extinct lineages, leaving a genetic
legacy that continues to shape human
trait variation today (1–3). Even as these

findings reshape our conception of human
origins, they also bring us more closely in line
with our primate relatives, where hybridiza-
tion is observed in many species (4, 5). Studies
of other living primates therefore provide con-
text for understanding admixture dynamics in
our own lineage. Field studies in hybrid zones,
for instance, offer the opportunity to inte-
grate demographic (e.g., reproductive success,
immigration/emigration), phenotypic, and ge-
nomic data on early-generation hybrids, which
studies in humans suggest experienced the
greatest fitness costs (6, 7).
Thus far, studies suggest that ancestry fre-

quently predicts trait variation inprimatehybrid
zones, but admixture often does not result in
overt fitness costs (8–11). However, field obser-
vations have not been combined with popu-
lation and functional genomic analyses to
investigate both the organismal and molec-
ular consequences of admixture in primates.
Here, we took such an approach to investi-
gate whether selection against introgression

(i.e., alleles introduced by gene flow from one
distinct lineage to another) is compatible with
apparently healthy hybrids, investigated the
functional consequences of introgressed alleles,
and followed the course of hybridization and
natural selection across generations.
We focused on admixture between yellow

baboons (Papio cynocephalus) and anubis
baboons (P. anubis): large-bodied, terrestrial
primates long used as a model for human
biology and evolution (12). Although baboon
taxonomy has undergone many revisions over
time, six extant baboon species are currently
recognized on the basis of distinct phenotypic
differences and a pattern of phylogenetic di-
vergence supported by recent whole-genome
sequencing data (12–14). This phylogeny estab-
lishes twomajor baboon lineages (the “northern”
and “southern” clades) that separated ~1.4 mil-
lion years ago, although the complex evolution-
ary history of baboons means that they may
have experienced episodes of gene flow since
that time (14–16). Anubis and yellow baboons
belong to the northern and southern clades,
respectively, and both phylogenetic and pop-
ulation genomic analyses confirm their diver-
gence into distinct taxa (13, 14). Nonetheless,
they interbreed to produce viable and fertile
offspring where their ranges meet (Fig. 1A).
We concentrated on the region in and around

the Amboseli basin of Kenya, where data from
50 years of continuous observation of a popula-
tion near the center of the hybrid zone are
available (17). Members of this majority-yellow
baboon population include descendants of
historical admixture prior to the start of moni-
toring in 1971, as well as descendants of a
directly observed, recent wave of admixture
beginning in 1982 (15, 18). In Amboseli, hybrids
do not experience obvious fitness costs, and
anubis ancestry may in fact confer benefits,
including accelerated maturation, increased
mating success, and higher rates of male-

female affiliation (19–21). However, field and
microsatellite data indicate that the hybrid zone
is narrow (22), which suggests that natural se-
lection may act to limit gene flow.

Structure of the baboon hybrid zone

To assess selection against introgression in
hybrid anubis-yellow baboons, we usedwhole-
genome resequencing data to evaluate ances-
try patterns for animals sampled in and near
the Amboseli hybrid zone (Fig. 1 and table S1).
We generated resequencing data from 430 wild
baboons from Amboseli and Mikumi National
Park in Tanzania [17 high-coverage (mean =
22.51×); 413 low-coverage (mean = 1.04×)],
which we combined with published baboon
genomes fromAmboseli (n = 22), Mikumi (n =
5), the Maasai Mara National Reserve (n = 7),
and the Aberdares region of central Kenya (n =
2) (14, 15, 23). In Amboseli, our sample included
442 baboons born between 1969 and 2016.
Finally, we also included the genomes of 39
captive baboons from the Southwest National
Primate Research Center (SNPRC; n = 31 col-
ony founders, 33 total) and the Washington
National Primate Research Center (WNPRC;
n = 6) (14, 15, 24).
We estimated global and local ancestry for

each individual using a composite likelihood
method suitable for low-coverage data, LCLAE,
which uses genotype likelihoods across genomic
windows rather than requiring genotypes
at specific variants (13, 15). These results con-
firmed that admixture is minimal or absent
in the anubis baboon founders of the SNPRC
colony, anubis baboons from Maasai Mara,
and yellow baboons fromMikumi (Fig. 1 and
fig. S5), although we cannot exclude ancient
bouts of admixture that affect all living baboons.
In contrast, all baboons from Amboseli are
admixed [Fig. 1A; mean = 30 to 37% genome-
wide anubis ancestry ± 10% SD), including
many whose ancestry can be traced to anubis-
like immigrants within the most recent seven
generations. These results closely match F4-ratio
estimates (25) (<2% difference for nine high-
coverage Amboseli genomes), indicating that
putative anubis ancestry in Amboseli reflects
admixture, not incomplete lineage sorting (13).
We also detected a signal of ~17% mean

anubis ancestry in the putatively yellow
baboon founders of the SNPRC colony, which
were previously thought to be unadmixed
(Fig. 1) (24). Identity-by-descent (IBD) analysis
using IBDMix (26) confirmed this pattern
(Fig. 1C). Because IBD betweenMikumi yellow
baboons and anubis baboons is <5%, these
findings also implicate admixture rather than
incomplete lineage sorting (Fig. 1C) (13). Com-
bined with evidence for yellow ancestry in a
central Kenyan anubis baboon (13, 14), our
results indicate that gene flow has been a
common feature of baboon evolution in east
Africa.
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Fig. 1. The structure of the baboon hybrid zone in Amboseli and the
surrounding region. (A) Geographic locations and local ancestry estimates
for baboons in this study (black asterisk = Amboseli). For each population,
each row corresponds to the first 20 Mb of chromosome 1 for one individual,
organized vertically by global ancestry. For Amboseli, a subsample of
100 individuals is shown. Central map: Ranges of yellow baboons and
anubis baboons in Kenya and Tanzania. Small map: Ranges of all
six African baboons (47), modified from a map by Kenneth Chiou (CC BY
3.0 license). [Baboon drawings by Christopher Smith] (B) Principal

components analysis (PCA) of genotype data for high-coverage genomes.
Inset: Distribution of “yellow-like” individuals along PC1. SNPRC
yellow baboon founders resemble admixed Amboseli baboons. (C) IBDMix
(26) results for three sets of yellow or majority-yellow baboons. SNPRC
yellow baboon founders and Amboseli baboons exhibit substantial
identity by descent (IBD) with anubis baboons, whereas IBD estimates
for Mikumi yellow and anubis baboons are low. The excess IBD in the
SNPRC and Amboseli samples points to the contribution of gene
flow beyond residual incomplete lineage sorting.
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Selection against introgression in Amboseli
To investigate whether selection restricts gene
flow between anubis and yellow baboons, we
focused on themultigenerational dataset from
Amboseli. We replicated three analyses used
to infer selection against Neanderthal or
Denisovan introgression in humans (27–29).
First, we tested for a relationship between
anubis ancestry in Amboseli and yellow-anubis
genetic divergence [based on unadmixed pop-
ulations (13)]. Because theAmboseli population
is largely of yellow baboon origin, if hybrid-
ization is deleterious, selection is expected to
be less permissive of anubis alleles that are
more diverged from their yellow counterparts.
Indeed, we found that anubis ancestry is sys-
tematically lower in regions of the genome
withmore fixed differences (Fig. 2A; Spearman’s
rho = –0.119, P = 8.05 × 10–34). In Amboseli,
anubis alleles were 6.7% less common in the
most diverged percentile relative to the least
diverged percentile of the baboon genome.
These results are similar to the negative
correlation between the density of fixed
human-Neanderthal differences and introgressed
Neanderthal ancestry in modern humans (27)
(Fig. 2B and table S2).
Second, we tested whether introgressed

anubis ancestry is depleted in genomic regions
that are likely to be affected by linked selection,
as summarized by B statistic values calculated
for the baboon genome (13, 30) (i.e., due to high
gene density per recombination distance). Again
paralleling the case of Neanderthal ancestry in
modern humans (28), anubis ancestry wasmost
common in regions that were predicted to be
least affected by linked selection (Fig. 2, C and
D; Spearman’s rho = 0.168, P = 1.73 × 10–66).
Consequently, anubis ancestry per individual
was reduced, on average, by 7.03% in protein-
coding regions relative to random, size-matched
regions of the genome (±4.20% SD; n = 442
Amboseli baboons). Reductions in promoters
and putative peripheral blood mononuclear
cell enhancers were 5.56% (±4.10% SD) and
6.22% (±4.20%), respectively.
Third,we testedwhether introgressed anubis

ancestry is positively correlated with local
recombination rate. This relationship is pre-
dicted if recombination influences the rate at
which natural selection eliminates deleterious
introgressed ancestry and uncouples deleteri-
ous from neutral introgressed variants. This
prediction, documented across diverse taxa
(29, 31, 32), was also observed in baboons (Fig.
2E; Spearman’s rho = 0.127, P = 1.48 × 10–38),
with a magnitude similar to that reported for
Neanderthal and Denisovan gene flow into
modern humans [Fig. 2F; Spearman’s rho =
0.17 and 0.14 for Neanderthal and Denisovan
ancestry, respectively (29)].
To investigate these patterns further, we

took advantage of the dynamic history of
admixture within the Amboseli population.

At the beginning of monitoring in 1971, all
Amboseli animals were considered to be yellow
baboons (33). Phenotypically anubis and ad-
mixed animals immigrated into the population
starting in 1982, and the proportion of hybrid
animals increased over the following decades
(18, 34). Whole-genome data recapitulate these
patterns, documenting an increase of 11.8%
anubis ancestry from 1971 (23.1 to 29.6%)
to 2020 (34.9 to 41.4%) (Fig. 3A). However,
animals with no known anubis ancestors
during the 50-year field study were also
clearly admixed (Fig. 3B). Additionally, although
immigrant males were more anubis-like than
the study population as a whole (Fig. 3A), one
immigrant male was among the most yellow-
like in our sample (78.8% yellow ancestry),
indicating ongoing gene flow involving both
parental taxa.
The Amboseli population today therefore

contains individuals that descend fromancient,
unobserved admixture events as well as those
affected by recent hybridization, generating a
bimodal distribution of genome-wide ancestry
(Fig. 3C) (15). By integrating local ancestry calls,
pedigree information, and field observations,
we identified 188 “recently” admixed individuals
whose ancestors include at least one anubis-like
immigrant within the last seven generations
(mean = 1.7 generations, although these animals
are not classical F1 or F2 hybrids because his-
torical gene flow is involved). We also classified
214 baboons as “historically” admixed, as their
genomes only contain anubis ancestry from
before 1971. Forty baboons could not be as-
signed to either hybrid class (13). Based on a
single-pulse model of admixture using DATES
(35), historical admixture is dated to amean of
283 (±242 SD) generations ago (n = 7 high-
coverage genomes), in contrast to 5 and21 gener-
ations ago for two recent hybrids sequenced to
high coverage.
Stratifying individuals in the dataset by

admixture history reveals that signatures of
selection against introgression are driven by
historical admixture (i.e., genomes sampled
dozens to hundreds of generations post-
contact). Historically admixed individuals are
more depleted of anubis ancestry in highly
diverged and low B-value regions of the genome
than recently admixed animals (Fig. 3, D and E).
Further, the relationship between anubis ances-
try and recombination rate is exclusive to the
historically admixed dataset, even when recom-
bination rates are measured on chromosome-
level scales (Fig. 3F and table S3) (13). The
weaker signature of selection in recent hybrids
likely reflects intermittent gene flow in the
most recent generations and stochastic inher-
itance processes. In contrast, sufficient gener-
ations have passed since historical admixture
to break apart large introgressed haplotypes,
allowing us to observe nonrandom patterns of
ancestry across the genome. This result em-

phasizes the importance of complementing field
observations with genomic data, which provide
insight into selective processes that operate over
time scales longer thaneven the longest-running
field studies.

Selection against regulatory divergence

Analyses of human-Neanderthal admixture
suggest a consistent pattern of selection against
regulatory variants (36). If so, the introgressed
regions that persist in modern humans have
likely been purged of many alleles with large
regulatory effects (37, 38). However, direct com-
parisons between the effect sizes of retained
versus lost archaic alleles are difficult, as
only a fraction of archaic hominin alleles (e.g.,
Neanderthal, Denisovan, or other ghost line-
ages) segregate in modern human genomes
today (28, 39). Extant primate populations,
where hybridization and selection are ongoing,
provide an opportunity to test this hypothesis.
To test for selection against gene regulatory

divergence in baboons, we paired genetic an-
cestry data with blood-derived RNA-sequencing
data from 145 individuals (n = 157 samples)
(40–42) (table S1). This dataset includes whole
blood andwhite blood cells, whichwere analyzed
separately while controlling for age, sex, and
kinship (13). Among 10,192 analyzed genes, we
identified no significant associations between
genome-wide ancestry and gene expression
levels (10% false discovery rate). In contrast,
local ancestry predicted gene expression
levels for 20.1% (2046) of tested genes in one
or both datasets (Fig. 4A), with concordant
additive effects between datasets (Pearson’s
R = 0.43, P < 10–200) and little evidence for
non-additivity (13).
If introgressed alleles that perturb gene

regulation are a primary target of selection,
we reasoned that selection should purge anubis
ancestry near genes where ancestry strongly
affects gene expression. In support of this
prediction, the top 15% of genes with the lar-
gest local ancestry effects on gene expression
harbored 1.5% less anubis ancestry, on aver-
age, than the bottom 15% of genes with the
smallest local ancestry effects (Fig. 4B; paired
t test, P = 1.10 × 10–36, n = 442). This difference
was exaggerated within historically admixed
individuals (1.9% reduction, P = 1.26 × 10–27, n =
214; table S4). Further, the correlation between
anubis ancestry and local recombination rate is
larger for genes with the largest local ancestry
effects than for those with the smallest (Fig. 4C;
rhodiff = 0.07 for the top and bottom 15% of
genes, bootstrapped P = 0.027; table S4). Com-
bined with the depletion of introgressed se-
quence in regulatory elements, these results
support the hypothesis that introgressed alleles
that affect gene regulation are nonrandomly
purged after hybridization. They are there-
fore consistent with the idea that natural
selection removed archaic variants with large
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regulatory effects from the genomes of mod-
ern humans (37).

Predicting the genomic landscape of introgression

Finally, we investigated our ability to predict
the genomic locations most and least affected

by introgression. We modeled mean anubis
ancestry as a function of local recombination
rate, single-nucleotide polymorphism density
in the reference yellow and anubis populations,
yellow-anubis genetic divergence, gene and
enhancer content, linked selection, and local

ancestry–associated gene expression in blood.
We iteratively trained an elastic net regression
model on nonoverlapping 250-kb windows of
the genome, representing 75% of the genome,
and applied themodel to a test set of windows
in the remaining 25% (13). We found that our
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Fig. 2. Selection against introgression in the Amboseli baboons mirrors
patterns described for archaic hominin admixture. (A, C, and
E) Proportion of introgressed (anubis) ancestry in Amboseli in 250-kb windows
(n = 10,324 total windows) as a function of (A) fixed differences between
yellow and anubis baboons (Spearman’s rho = –0.119, P = 8.05 × 10–34), (C)
mean B value (rho = 0.168, P = 1.73 × 10–66), and (E) mean recombination
rate (rho = 0.127, P = 2.49 × 10–38), divided into quintiles for visualization
purposes only. Dashed gray lines show median anubis ancestry across all

windows. (B, D, and F) Predicted relationships between introgressed ancestry
and all three measures are observed for both anubis ancestry in the Amboseli
baboons (solid lines) and Neanderthal ancestry in modern human genomes
(dashed lines) (27–29), consistent with selection against introgression. Panels
show the relationship between introgressed ancestry and the rank-ordered (B)
number of fixed differences, (D) mean B statistic, and (F) mean local
recombination rate. Mean introgressed ancestry is centered on 0 and divided by
the standard deviation for each species to facilitate comparison.
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Fig. 3. Recent and historical hybrid ancestry in Amboseli. (A) Mean
genome-wide anubis ancestry in the Amboseli population has increased
since the 1970s. Numbers above the x axis indicate the number of individuals
used to calculate annual ancestry (black, all individuals; green, male
immigrants). (B) Pedigree and ancestry estimates for example historical (left)
and recent (right) hybrids. Pedigree individuals with resequencing data
are colored by ancestry. The two examples share a maternal grandmother and
were born a few years apart [yellow and bright green asterisks in (A)]. The

father of the recent hybrid immigrated in 2004 [olive green asterisk in (A)].
(C) Genome-wide anubis ancestry in Amboseli, with density plots overlaid for
historical and recently admixed individuals. (D to F) The relationships
between introgressed anubis ancestry and the rank-ordered (D) number of
fixed anubis-yellow differences, (E) mean B value, and (F) mean local
recombination rate. All relationships are stronger for historical hybrids
than for recent hybrids. Right panels show anubis ancestry within each
dataset mean-centered to 0.
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predicted values were consistently positively
correlated with observed levels of anubis
ancestry in the test sets (mean Pearson’s R =
0.254 ± 0.016 SD versus 0.014 ± 0.011 SD for
models fit to permuted data), with frequent
contributions from features capturing local
recombination rate, linked selection, genetic
variation, and sequence divergence (Fig. 4D
and table S5). We consistently predicted anubis
ancestry more accurately in historical hybrids
than in recent hybrids (mean Pearson’s R =

0.265 ± 0.017 SD versus 0.177 ± 0.018 SD,
bootstrapped P < 10–3).
Our longitudinal data also indicate that in-

creases in anubis ancestry across the 50-year
field study are nonrandomly distributed
throughout the genome. Controlling for the
starting level of anubis ancestry in 1979, 100-kb
windows characterized by lower FST and higher
recombination rates experienced larger increases
in anubis ancestry between 1979 and 2020,
although both effect sizes were small (FST and

recombination rate P values < 10–3, b = –2.965 ×
10–4 and 1.020 × 10–4, respectively; n = 25,797
windows; table S6). B statistic values did not
predict temporal change in anubis ancestry
independently of recombination rate.

Divergence and hybridization in primates

Our genomic analysis reveals evidence for
selection against admixture that is remarkably
consistent with results obtained for archaic
introgression inhumans.Our results also support
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a hypothesis that can only be indirectly tested
in our own lineage: that natural selection has
acted to eliminate introgressed alleles that
strongly perturb gene regulation (37). These
results contrast with the behavioral and life
history evidence to date in Amboseli—one of
the largest and longest-running primate field
sites in theworld—which indicates that hybrid
baboons suffer no obvious fitness costs (19–21).
Our results identify subtle selection against
hybridization that may help to explain the
maintenance of primate taxonomic integrity
in the face of frequent interspecific gene flow
(4, 5). Ultimately, the outcome of this process
will depend on the relative balance among this
selection pressure, possible advantages to intro-
gressed ancestry, migration rates, and demo-
graphic stochasticity—potentially explaining
cases of nuclear swamping in baboons despite
costs to hybridization (16).
The mode of selection against hybrids is

unclear. Unlike in humans, hybridization load
is unlikely to explain our results: Yellow and
anubis baboons harbor similar levels of genetic
diversity compared tohumansandNeanderthals,
which differ more [<50% difference in baboons
versus a >3-fold difference between humans
and Neanderthals (6, 14, 15, 27)]. Both hybrid
incompatibilities and ecological selection, how-
ever, could play a role. For example, some
reports suggest that anubis and yellow ba-
boons occupy distinct climatic niches (43).
Previously described assortative mating by an-
cestry in the Amboseli baboons (20) may also
limit introgression. Understanding the genetic
and phenotypic mechanisms that influence
interspecific gene flow, including the role of the
X chromosome and adaptive introgression, re-
mains an important goal for future work.
Combined, our findings illustrate the impor-

tance of contextualizing genomic data with
phenotypic and demographic information to
understand the evolutionary dynamics of
admixture. Genomes harbor information about
historical processes that stretch back many
generations, and can capture subtle signatures
of selection that may not be obvious in natural
populations where demographic stochasticity
is high, sample sizes are modest, and the
specific phenotypes under selection may be
unknown. Conversely, field data reveal the
range of phenotypic and fitness outcomes
that are compatible with genomic signatures
of selection. Indeed, genomic evidence alone
has led some researchers to posit that the
costs of modern human-archaic hominin inter-
breedingmust have been high, reflecting species
at the brink of reproductive incompatibility
(44, 45). Our results point to the limits of these
inferences by indicating that qualitatively
similar evidence for selection against intro-
gression can be compatible with primate hy-
brids that thrive (19–21). This work therefore
highlights the crucial role of other primates

for understanding human evolution, espe-
cially for phenomena that are impossible to
study in our lineage alone.
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Hidden selection against interbreeding
Today, humans are the only extant members of our genus, Homo. This was not the case in the past, as we now know
that our ancestors shared the planet with other Homo species. It has been suggested that selection against hybrid
individuals would have acted against breeding across these species, but such a hypothesis is difficult to test today.
To study this question, Vilgalys et al. took advantage of a decades-long dataset on two species of baboon from the
Amboseli basin of Kenya. They found evidence of selection against hybrid, or admixed, ancestry similar to what has
been predicted for ancestral hominids. Although evidence for selection against hybrids was clear, they also found that
individual hybrids can thrive. —SNV
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